Exercise 53

How many tangent lines to the curve $y=x /(x+1)$ pass through the point $(1,2)$? At which points do these tangent lines touch the curve?

Solution

The equation of any line that goes through $(1,2)$ is

$$
y-2=m(x-1) \quad \rightarrow \quad y=m x+2-m,
$$

where m is the slope. For this line to be tangent to the given curve, the two functions representing them must be equal at some value of x.

$$
\begin{equation*}
\frac{x}{x+1}=m x+2-m \tag{1}
\end{equation*}
$$

In addition, their slopes must be equal at this value of x.

$$
\begin{equation*}
\frac{1}{(x+1)^{2}}=m \tag{2}
\end{equation*}
$$

Equations (1) and (2) can be solved for the unknowns, m and x. Substitute the formula for m into equation (1).

$$
\frac{x}{x+1}=\frac{1}{(x+1)^{2}} x+2-\frac{1}{(x+1)^{2}}
$$

Multiply both sides by $(x+1)^{2}$.

$$
x(x+1)=x+2(x+1)^{2}-1
$$

Expand both sides.

$$
x^{2}+x=x+2 x^{2}+4 x+2-1
$$

Bring all terms to one side.

$$
x^{2}+4 x+1=0
$$

Solve for x.

$$
x=\frac{-4 \pm \sqrt{16-4(1)(1)}}{2(1)}=-2 \pm \sqrt{3}
$$

Again, these values of x are where tangent lines (that go through $(1,2)$) intersect the given curve. Plug them into the given function.

$$
\begin{aligned}
& y(-2+\sqrt{3})=\frac{-2+\sqrt{3}}{-2+\sqrt{3}+1}=\frac{-2+\sqrt{3}}{-1+\sqrt{3}} \cdot \frac{-1-\sqrt{3}}{-1-\sqrt{3}}=\frac{-1+\sqrt{3}}{-2}=\frac{1-\sqrt{3}}{2} \\
& y(-2-\sqrt{3})=\frac{-2-\sqrt{3}}{-2-\sqrt{3}+1}=\frac{-2-\sqrt{3}}{-1-\sqrt{3}} \cdot \frac{-1+\sqrt{3}}{-1+\sqrt{3}}=\frac{-1-\sqrt{3}}{-2}=\frac{1+\sqrt{3}}{2}
\end{aligned}
$$

Therefore, the points that the (two) tangent lines touch the curve are

$$
\left(-2+\sqrt{3}, \frac{1-\sqrt{3}}{2}\right) \quad \text { and } \quad\left(-2-\sqrt{3}, \frac{1+\sqrt{3}}{2}\right) .
$$

